OpenAI의 Deliberative Alignment

OpenAI가 오늘 AI 안전성 확보를 위한 새로운 접근 방식인 Deliberative Alignment(DA)를 공개했습니다. 이는 AI 모델의 윤리적 판단과 안전성 확보에 있어 의미있는 진전을 보여주는 발표이고 리즈닝으로 성능을 극대화 하는 최근 추세와도 딱 맞는 접근 방법이라 생각합니다. 또한 DA는 안전성, 견고성, 일반화 능력 등 대부분의 중요 지표에서 기존 방식들을 크게 개선했으며, 특히 Jailbreak 방어를 위해 과도하게 응답을 […]

계속 읽기

AI 연구/개발자로서 1년을 보내며

AI 연구/개발자로서 첫 1년.. 결과적으로 매우 의미있었습니다. DT조직에서 AI 조직으로 옮긴지 1년이 넘었다. 왜 옮겼는지 궁금한 분들은 이전 블로그 글에서 확인할 수 있다. 올해는 서비스 적용 가능한 대화 엔진을 만드는데 집중했는데, 생각지도 못하게 서비스에 적용하는 경험도 했으며,엔진의 컴포넌트를 평가하기 위해 참석한 국제 대회에서도 첫 참가에 2등의 성적으로 입상했다. Data Scientist로 오랫동안 일하고 고작 1년만에 이런 […]

계속 읽기

DMLC 맴버로 초청받다.

지난 2월 온전히 1개월을 모두 뉴질랜드 가족여행에 쏱아 붓고 있던 중 뉴질랜드 푸카키 호수 마운트 쿡 빙하 아래 있던 (전화도 잘 터지지 않던)오지 캠핑장에서 작은 메일을 받았다. DMLC에 초대를 하고 싶다는 메일이었다. DMLC(Distributed (Deep) Machine Learning Community ) DMLC는 대표적으로 데이터 사이언스를 한다면 알고 있을 xgboost를 만든 개발자 집단이라 보면 된다. xgboost는 지금도 그렇지만 케글과 […]

계속 읽기

Text Analysis Developers’ Workshop 2018 참석 후기

작년부터 1년엔 한번씩 Text Analysis Developers’ Workshop에 참석을 하게 되었고 작년 런던 정경대에서의 워크샵 참석 이후 NYU의 워크샵에 다시 초대되었다. 워크샵 참석을 위한 숙박비 및 비행티켓 등은 NYU와 rOpenSci에서 펀딩을 받았다. 기간동안의 일비, 로밍 비용은 SK Telecom에서 지원해주었다. 세계적으로 많이 쓰이는 텍스트 분석 오픈소스 개발자들을 대상으로 초대가 이루어 졌고, 초청받은 사람만 참석 가능한 특징을 가지고 […]

계속 읽기

KoSpacing : 한글 자동 띄어쓰기 패키지 공개

띄어쓰기는 형태소 분석 이전에 반드시 수행해야 되는 중요 전처리 과정중에 하나이며, 이 때문에 공개된 형태소 분석기에는 일종의 자동띄어쓰기 모듈이 숨겨져 있는 경우가 많다. 하지만 그런 띄어쓰기 엔진의 성능이 대부분 좋지 않아 허울뿐인 경우가 많다. 필자가 만든 KoNLP 역시 그중에 하나였다. 물론 띄어쓰기는 형태소 분석 이전에만 사용하는게 아니다. 띄어쓰기 모듈은 Speech To Text 혹은 음성인식 모듈에서 […]

계속 읽기

딥러닝이 덧셈을 하는 방법, Attention Mechanism으로 살펴보기

필자가 지난번 seq2seq기반 덧셈 모형 빌드(with Gluon)을 Gluon으로 구축했으며, 잘 동작하는 모습을 보여줬다. 해당 코드를 정리하면서 딥러닝이 어떠한 방식으로 덧셈을 하는지 조금더 엿볼 수 있으면 어떨까 하는 생각이 들었다. 이 글을 보기 전에 이전 포스트를 먼저 읽어보길 권한다. 이 포스트에서 보여줄 두가지 부분은 어텐션 매커니즘(attention mechanism) 구현과 시각화 그리고 Gluon 모델의 학습/예측 퍼포먼스 향상을 할 […]

계속 읽기

seq2seq기반 덧셈 모형 빌드(with Gluon)

필자가 Gluon을 시작한 계기는 바로 Keras로 seq2seq기반의 네트워크를 구축하기가 매우 어렵거나 모호해서 였다. 사실 간단한 영한 기계번역기를 Keras로 만들다가 한계에 부딧혀 포기했다. 그 원인은 아래 도표를 보면 알겠지만 학습과 예측의 네트웍 플로우가 다른데 있는데, 이럴 경우 예측 코드는 Keras에서 작성하기가 어려워진다. 사실 어렵다기 보다는 모호한 코드를 짜게 될 가능성이 많다. 그래서 해당 코드를 작성하고 이틀만 […]

계속 읽기

Grad CAM을 이용한 딥러닝 모형 해석

모형의 해석은 실무적인 관점에서 생각보다 중요한 부분을 차지하고 있다. 가장 먼저 모형이 상식에 맞게 만들어 졌는지 확인하기 위한 용도로 활용 가능한데, 만일 상식에 기반해서 모형이 만들어 졌다면 오랜 기간 모형을 운영하는데 안정성을 유지해줄 가능성이 많다. 또한 모형 스코어에 대한 설명을 현업에서 요구하는 경우가 많은데, 이 경우 현업의 이해와 신뢰를 도모하는데 큰 역할을 해준다. 무엇보다 모형을 […]

계속 읽기